

Содержание	Страница
Основные положения	1
Выбор диаграммы	2
Исходные данные для подбора индивидуальной дымовой трубы	4
Примеры расчёта	5
Природный газ	
Атмосферные газовые котлы с горелкой без вентилятора	6
Отопительные котлы с естественной тягой и вентиляторной горелкой	11
Отопительные котлы с избыточным давлением в камере сгорания и вентиляторной горелкой	14
Конденсационные котлы	20
Жидкое топливо	
Отопительные котлы с естественной тягой и вентиляторной горелкой	22
Отопительные котлы с избыточным давлением в камере сгорания и вентиляторной горелкой	24
Твёрдое топливо	
Отопительные котлы с естественной тягой	31
- Твёрдое топливо - уголь	32
- Твёрдое топливо - дрова	33
Твёрдое топливо - древесные пеллеты	34
- Камины с открытой топкой	37
- Кафельные печи	39
Опросный лист	40

Издание и редакция
ООО «Шидель» Москва
Печать и размножение
только по согласованию и с разрешения
ООО «Шидель» Москва или
Schiedel GmbH & Co. München
Фирма оставляет за собой право
на внесение технических изменений
Издание 2008 года

Основные положения

Правильно подобранный диаметр обеспечивает безупречную эксплуатацию Правильно подобранный диаметр поперечного сечения дымовой трубы является основной предпосылкой для безупречного функционирования любой установки, сжигающей топливо. Соответствующее сечение дымовой трубы вместе с эффективной высотой дымовой трубы должны быть рассчитаны таким образом, чтобы не только преодолеть аэродинамическое сопротивление теплогенератора, но и обеспечить отвод дымовых газов в режиме разрежения через крышу в атмосферу. Использование хорошей изоляции, соответствующей каждому диаметру, обеспечивает сохранение высоких температур дымовых газов в устье дымовой трубы.

Функциональная надёжность и экономичность

Стремясь обеспечить функциональную надёжность и экономичность работы дымовой трубы, компания Schiedel со стадии проектирования придаёт большое значение правильному расчёту поперечного сечения. В течение многих лет мы предоставляем в распоряжение наших клиентов простые в использовании и надёжные расчётные диаграммы по подбору поперечного сечения дымовой трубы. Чтобы сократить нашим партнёрам затраты времени на трудоёмкие расчёты, эти расчётные диаграммы включают в определённых рамках также аэродинамическое сопротивление соединительных элементов между котлом и дымовой трубой.

Выбор диаграммы

Индивидуальная дымовая труба

Отопительные котлы, как правило, подключаются к индивидуальной дымовой трубе. Диаграммы для расчёта поперечного сечения 1.1-7.2 действуют именно для таких случаев.

Для расчёта поперечного сечения дымовой трубы, обслуживающей камин с открытой топкой, необходимо воспользоваться диаграммой 8.1.

При определении диаметра дымовой трубы для нагревательной кафельной печи разработана таблица 8.1

Выбор диаграммы

Данные диаграммы предназначены для расчёта нечувствительных к влаге, многослойных, проветриваемых дымоходных систем Schiedel UNI, работающих в режиме разрежения.

Диаграммы для определения поперечного сечения

Выбор диаграммы для расчёта осуществляется в зависимости от вида используемого топлива, конструктивных особенностей топливоиспользующей установки (атмосферный котёл, котёл с избыточным давлением, горелка с вентилятором или без него), а также температуры уходящих газов.

Диаграмма

Расчёт поперечного сечения

Выбор диаграммы

Отопительные газовые котлы с горелками с вентилятором и естественной тягой

Отопительные газовые котлы с горелками с вентилятором и тягой на выходе из котла ± 0 Па

Конденсационные котлы

Отопительные котлы на дизельном топливе с горелками с вентилятором и естественной тягой

Отопительные котлы на дизельном топливе с горелками с вентилятором и тягой на выходе из котла ± 0 Па

Отопительные котлы на твёрдом топливе

Отопительные котлы на древесных пеллетах

Камины с открытой топкой

 oT
 Д0
 №

 ≥ 80°C
 < 100°C</td>
 1.1

 ≥ 100°C
 < 120°C</td>
 1.2

 ≥ 120°C
 < 140°C</td>
 1.3

 ≥ 140°C
 1.4

Температуры дымовых газов

	Температуры дымовых газов	Диаграмма
ОТ	до	Nº
≥ 140°C	< 190°C	2.1
≥ 190°C		2.2

	Температуры дымовых газов	Диаграмма
ОТ	до	Nº
≥ 60°C	< 80°C	3.1
≥ 80°C	< 100°C	3.2
≥ 100°C	< 140°C	3.3
≥ 140°C	< 190°C	3.4
> 100°C		3.5

	Температуры дымовых газов	Диаграмма
ОТ	до	Nº
≥ 30°C		3.6

	Температуры дымовых газов	Диаграмма
ОТ	до	Nº
≥ 140°C	< 190°C	4.1
≥ 190°C		4.2

	Температуры дымовых газов	Диаграмма
ОТ	до	Nº
≥ 60°C	< 80°C	5.1
≥ 80°C	< 100°C	5.2
≥ 100°C	< 140°C	5.3
≥ 140°C	< 190°C	5.4
> 190°C	— -	5.5

Температуры дымовых газов		Диаграмма
ОТ	до	Nº
≥ 140°C	< 190°C	6.1
≥ 190°C		6.2

	Температуры дымовых газов	Диаграмма
ОТ	до	Nº
≥ 140°C	< 190°C	7.1
≥ 190°C		7.2

	Температуры дымовых газов	Диаграмма
ОТ	до	Nº
≥ 80°C	< 190°C	8.1

Кафельные печи Таблица 8.1

Исходные данные для подбора индивидуальной дымовой трубы

Единицы измерения в соответствии с международной системой

Выбор требуемого поперечного сечения дымовой трубы осуществляется при помощи диаграмм 1.1 - 7.2 в зависимости от номинальной тепловой мощности котла и эффективной высоты дымовой трубы.

Под эффективной высотой понимается расстояние от точки подключения потребителя к дымовой трубе до устья.

Диаграммы построены на основании международной системы единиц измерений (номинальная мощность в кВт, тяга котла в Па).

Пересчёт отдельных единиц измерения в международную систему

 $1 \ \text{ккал/час} = 1,16 \ \text{Вт}$ $1 \ \text{мм в.ст.} = 9,81 \ \Pi \text{а}$ $1 \ \text{мбар} = 100 \ \Pi \text{а}$ $1 \ \text{Н/м}^2 = 1 \ \Pi \text{а}$

1Вт = 0,86 ккал/час 1Па = 0,1 мм в.ст. 1Па = 0,01 мбар

Исходные данные для диаграмм

При составлении диаграмм с 1.1 по 7.2 использованы следующие исходные данные:

Термическое сопротивление дымовой трубы

Диаметры 12-20 см $(1/\lambda) = 0,40$ м² K/Bт Диаметры 25-60 см $(1/\lambda) = 0,65$ м² K/Bт

Шероховатость внутренней поверхности стенки трубы r=0,0015 м

Соединительных элементов:

Термическое сопротивление $(1/\lambda_{\rm v}) = 0.65~{\rm M}^2~{\rm K/BT}$ Шероховатость ${\rm r}_{\rm v} = 0.001~{\rm M}$

Длина соединительных элементов

(Дымоход, дымоотвод) максимум 2,0 м

Высота соединительных элементов 0,5 м

Местные сопротивления поворотов, участков с изменением конфигурации сечения, изменения скорости движения потока в соединительных элементах, а также на входе в дымовую трубу в сумме равны $\Sigma = 1,8$.

Примеры расчёта

Исходные данные Примеры основаны на следующих значениях:

Отопительная мощность 30 кВт, эффективная высота дымовой трубы 12 м,

длины соединительных элементов 2 м, 2 поворота на 90°

Пример 1 Топливо - природный газ

Атмосферный газовый котёл с горелкой без вентилятора

(атмосферная горелка);

Температура дымовых газов после стабилизации потока 80°C;

Требуемое поперечное сечение дымовой трубы по диаграмме 1.1 = 14 см

Пример 2 Топливо - природный газ

Отопительный котёл с горелкой с вентилятором и естественной тягой;

Температура дымовых газов на выходе из котла - 140°C;

Требуемое поперечное сечение дымовой трубы по диаграмме 2.1 = 12 см. Могут использоваться котлы с тягой до 11 Па (правая шкала диаграммы 2.1)

Пример 3 Топливо - природный газ

Котёл с избыточным давлением в камере сгорания. Горелка с вентилятором.

Температура дымовых газов на выходе из котла - 80°C;

Требуемое поперечное сечение дымовой трубы по диаграмме 3.1 = 12 см

Пример 4 Топливо - жидкое

Отопительный котёл с горелкой с вентилятором и естественной тягой;

Температура дымовых газов на выходе из котла - 140°C;

Требуемое поперечное сечение дымовой трубы по диаграмме 4.1 = 12 см. Могут использоваться котлы с тягой до 11 Па (правая шкала диаграммы 4.1)

Пример 5 Топливо - дрова

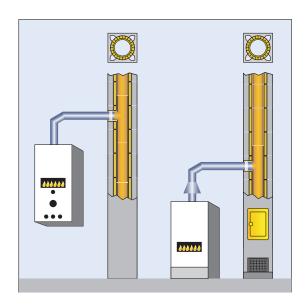
Отопительный котёл с естественной тягой;

Температура дымовых газов на выходе из котла - 240°C;

Требуемое поперечное сечение дымовой трубы по диаграмме 6.1 = 16 см Могут использоваться котлы с тягой до 18 Па (правая шкала диаграммы 6.1)

Пример 6 Топливо - древесные пеллеты

Отопительный котёл с горелкой с вентилятором и естественной тягой;


Температура дымовых газов на выходе из котла - 140°C;

Требуемое поперечное сечение дымовой трубы по диаграмме 7.1 = 16 см Могут использоваться котлы с тягой до 18 Па (правая шкала диаграммы 7.1)

Природный газ Атмосферные газовые котлы с горелкой без вентилятора

Сжигание газа в горелках без вентилятора (атмосферные горелки)

При использовании этого типа котлов между котлом и дымовой трубой устанавливается стабилизатор потока, основным назначением которого является предотвращение негативного влияния на процесс сжигания газа возможных колебаний тяги в дымовой трубе под влиянием различных погодных факторов. Аэродинамическое сопротивление стабилизатора потока и соединительных элементов преодолевается за счёт тяги, создаваемой дымовой трубой.

Требуемое поперечное сечение дымовой трубы

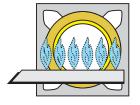
- Температура дымовых газов после стабилизатора потока ≥ 80°C и < 100°C. Диаграмма 1.1.
- Температура дымовых газов после стабилизатора потока ≥ 100°C и < 120°C. Диаграмма 1.2.
- Температура дымовых газов после стабилизатора потока ≥ 120°С и < 140°С. Диаграмма 1.3.
- Температура дымовых газов после стабилизатора потока ≥ 140°C. Диаграмма 1.4.

Пример

Топливо - природный газ

Атмосферный газовый котёл с горелкой без вентилятора Номинальная тепловая мощность - 30 кВт Температура уходящих газов после стабилизатора потока - 80°С Эффективная высота дымовой трубы - 12 м Общая длина соединительных элементов - 2 м, два поворота на 90°

Результат


В соответствии с диаграммой 1.1 требуемое поперечное сечение дымовой трубы - 14 см.

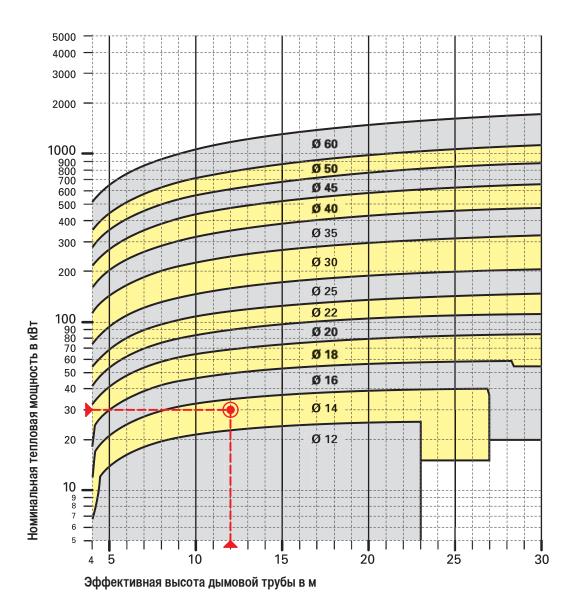
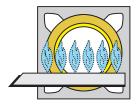


Диаграмма 1.1 Природный газ

Атмосферные газовые котлы с горелками без вентилятора Температура уходящих газов после стабилизации потока t_w ≥ 80°C и < 100°C

80°C

Расчёт по EN 13384 часть 1


Schiedel 2008

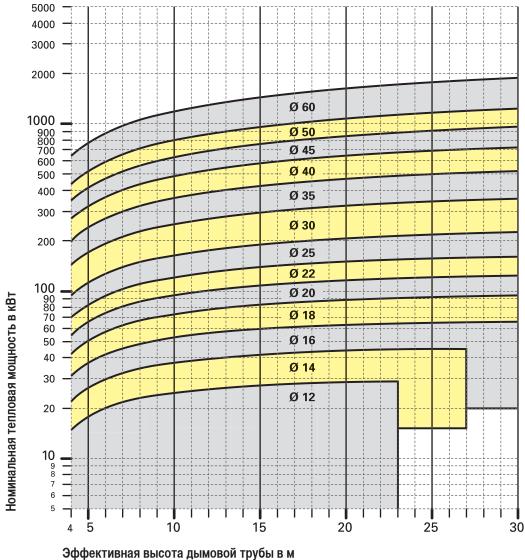
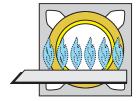


Диаграмма 1.2 Природный газ

Атмосферные газовые котлы с горелками без вентилятора Температура уходящих газов после стабилизации потока t_w≥ 100°С и < 120°С

100°C



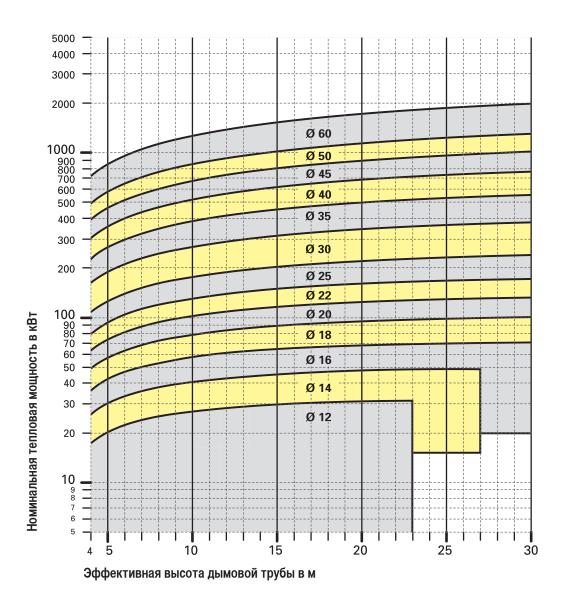
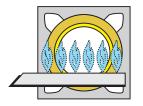


Диаграмма 1.3 Природный газ

Атмосферные газовые котлы с горелками без вентилятора Температура уходящих газов после стабилизации потока t_w ≥ 120°C и < 140°C

120°C



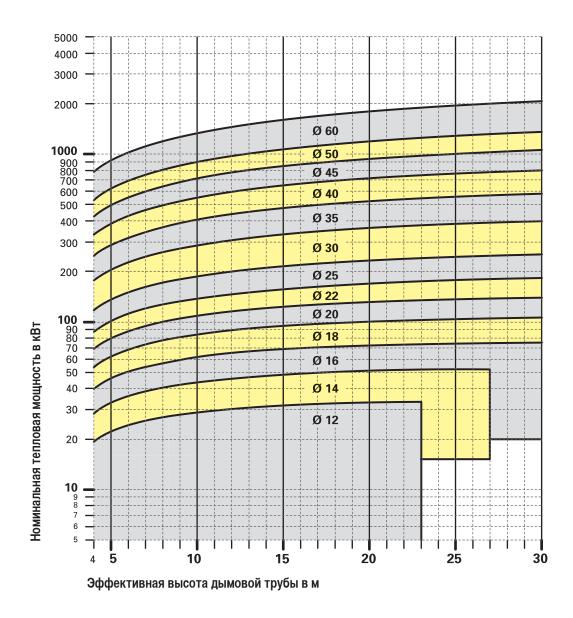


Диаграмма 1.4 Природный газ

Атмосферные газовые котлы с горелками без вентилятора Температура уходящих газов после стабилизации потока t_w ≥ 140°C

140°C

Расчёт по EN 13384 часть 1

Schiedel 2008

Природный газ Отопительные котлы с естественной тягой

Сжигание газа в горелках с вентилятором

Сжигание природного газа в котлах этого типа происходит при разрежении в топке котла. Аэродинамическое сопротивление котла и соединительных элементов преодолевается за счёт тяги, создаваемой дымовой трубой.

Бытовой газ

Для расчёта поперечного сечения дымовой трубы, подключённой к теплогенератору, работающему на бытовом газе, можно пользоваться диаграммами для природного газа.

Требуемое поперечное сечение дымовой трубы

- Температура дымовых газов на выходе из котла ≥ 140°С и < 190°С. Диаграмма 2.1.
- Температура дымовых газов на выходе из котла ≥ 190°C. Диаграмма 2.2.

Пример

Топливо - природный газ

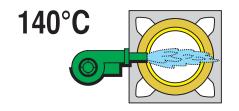
Отопительный котёл с горелкой с вентилятором с естественной тягой Номинальная тепловая мощность - 30 кВт

Температура уходящих газов на выходе из котла - 140°C

Эффективная высота дымовой трубы - 12 м

Общая длина соединительных элементов - 2 м, два поворота на 90°

Результат


Требуемое поперечное сечение дымовой трубы определяется по диаграмме 2.1 и составляет 12 см.

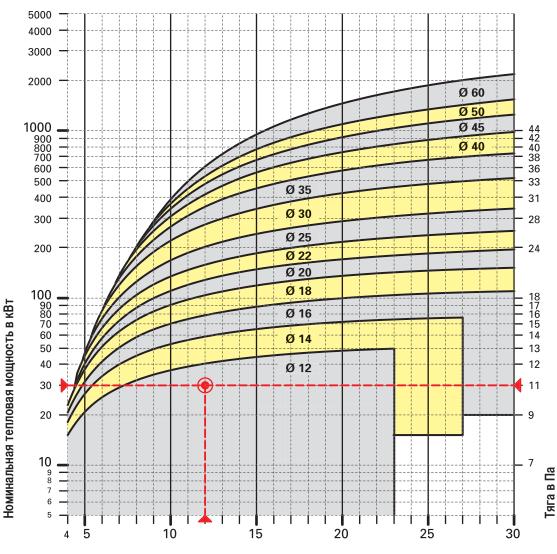
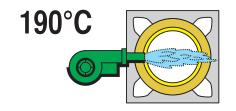

Могут использоваться котлы с тягой до 11 Па (правая шкала диаграммы 2.1)

Диаграмма 2.1 Природный газ

Отопительные котлы с горелками с вентилятором и естественной тягой Температура уходящих газов на выходе из котла $t_w \ge 140^{\circ}\text{C}$ и < 190°C


Расчёт по EN 13384 часть 1

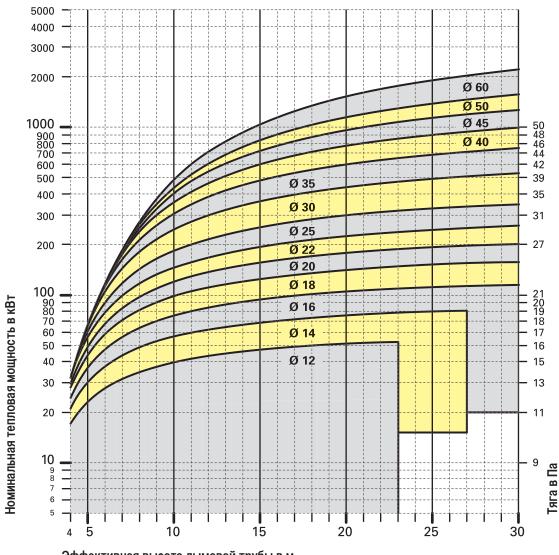
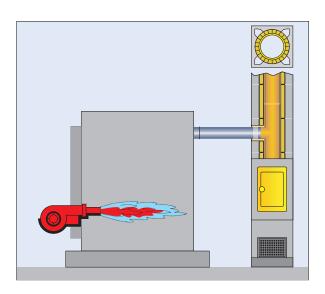

Эффективная высота дымовой трубы в м

Диаграмма 2.2 Природный газ

Отопительные котлы с горелками с вентилятором и естественной тягой Температура уходящих газов на выходе из котла t_w≥ 190°C

Расчёт по EN 13384 часть 1


Эффективная высота дымовой трубы в м

Природный газ

Отопительные котлы с избыточным давлением в камере сгорания

Сжигание газа в горелках с вентилятором

В котлах этого типа сжигание газа в топке котла происходит при избыточном давлении в камере сгорания. Движение дымовых газов через теплообменник осуществляется благодаря нагнетанию в топке. Аэродинамическое сопротивление соединительных элементов преодолевается за счёт тяги, создаваемой дымовой трубой.

Требуемое поперечное сечение дымовой трубы

- Температура дымовых газов на выходе из котла ≥ 60°С и < 80°С. Диаграмма 3.1.
- Температура дымовых газов на выходе из котла ≥ 80°С и < 100°С. Диаграмма 3.2.
- Температура дымовых газов на выходе из котла ≥ 100°С и < 140°С. Диаграмма 3.3.
- Температура дымовых газов на выходе из котла ≥ 140°C и < 190°C. Диаграмма 3.4.
- Температура дымовых газов на выходе из котла ≥ 190°C. Диаграмма 3.5.

Пример

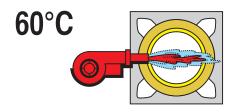
Топливо - природный газ

Котёл с избыточным давлением в камере сгорания и горелкой с вентилятором Номинальная тепловая мощность - 30 кВт

Температура уходящих газов на выходе из котла - 60°C

Эффективная высота дымовой трубы - 12 м

Общая длина соединительных элементов - 2 м, два поворота на 90°


Результат

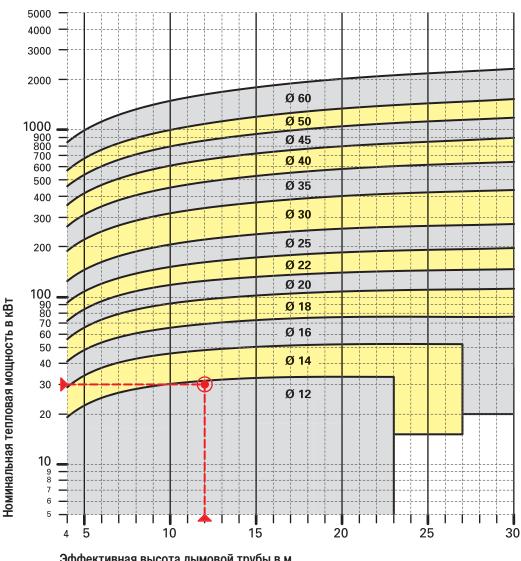
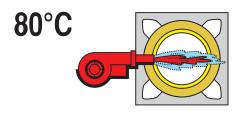

В соответствии с диаграммой 3.1 требуемое поперечное сечение дымовой трубы - 12 см.

Диаграмма 3.1 Природный газ

Котлы с избыточным давлением в камере сгорания с горелками с вентилятором Температура уходящих газов на выходе из котла t_w ≥ 60°С и < 80°С


Расчёт EN 13384 часть 1

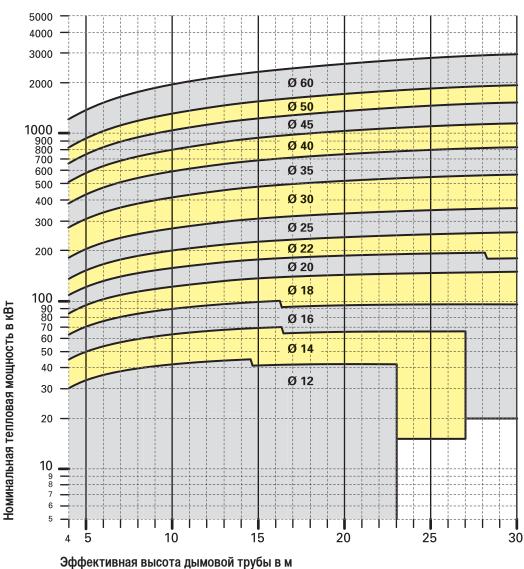
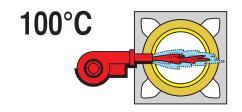

Эффективная высота дымовой трубы в м

Диаграмма 3.2 Природный газ

Котлы с избыточным давлением в камере сгорания с горелками с вентилятором Температура уходящих газов на выходе из котла t_w ≥ 80°С и < 100°С



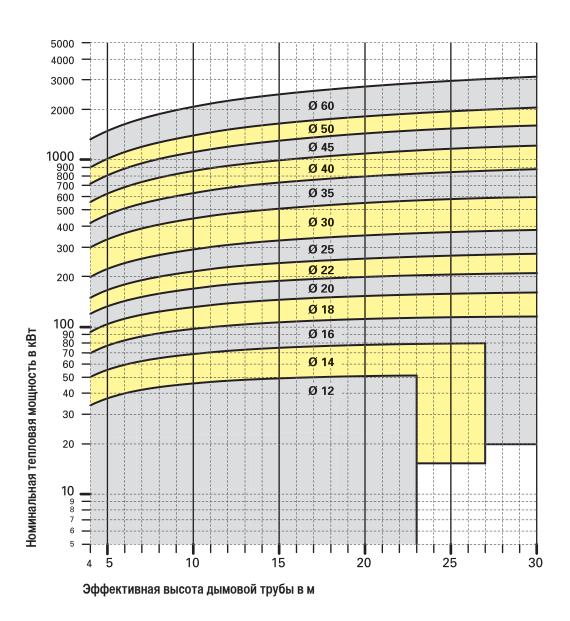
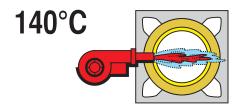


Диаграмма 3.3 Природный газ

Котлы с избыточным давлением в камере сгорания с горелками с вентилятором Температура уходящих газов на выходе из котла t_w ≥ 100°C и < 140°C



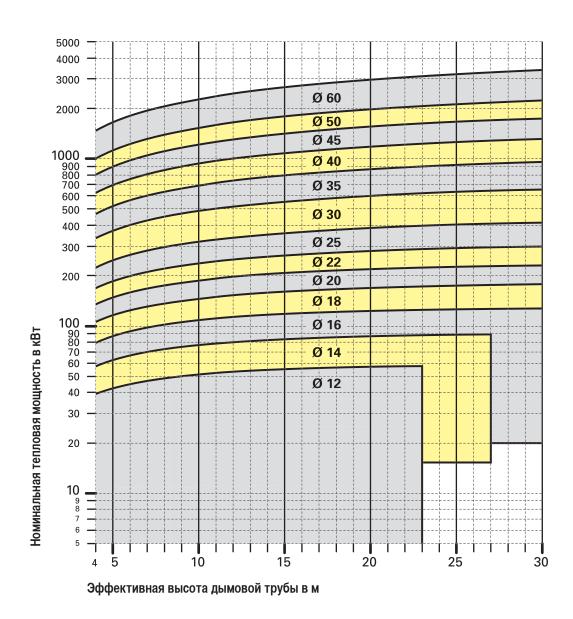
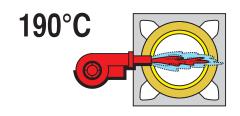


Диаграмма 3.4 Природный газ

Котлы с избыточным давлением в камере сгорания с горелками с вентилятором Температура уходящих газов на выходе из котла $t_w \ge 140^{\circ}\text{C}$ и < 190°C



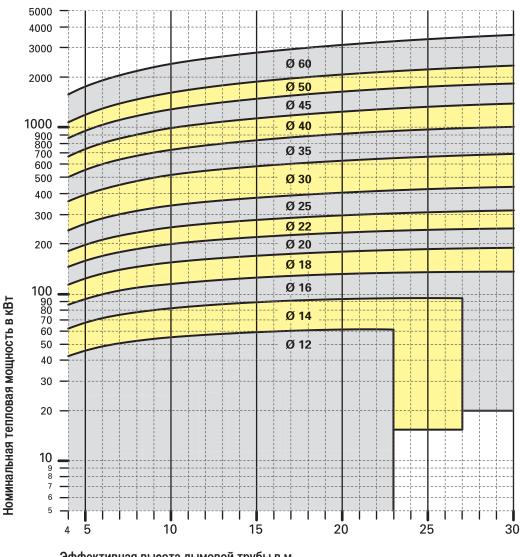


Диаграмма 3.5 Природный газ

Котлы с избыточным давлением в камере сгорания с горелками с вентилятором Температура уходящих газов на выходе из котла t_w≥ 190°C

Расчёт EN 13384 часть 1

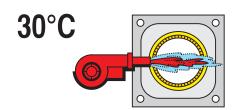
Эффективная высота дымовой трубы в м

Природный газ Конденсационные котлы

Конденсационные котлы, работающие на природном газе, подключаются к системе Schiedel Avant \emptyset 14 см

Надёжное функционирование дымовой трубы Schiedel вместе с конденсационным котлом обеспечивается благодаря правильному подбору диаметра (Диаграмма 3.6). Такая дымовая труба навсегда защитит Ваш дом от некрасивых подтёков. Эксплуатация в режиме противотока за счёт эффективного теплообмена позволяет дополнительно экономить энергию.

Требуемое поперечное сечение дымовой трубы


Исходные данные:

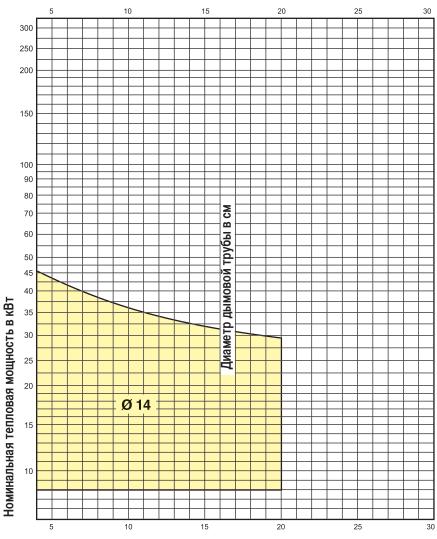
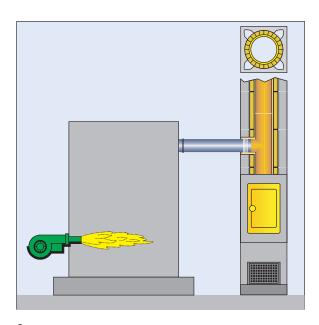

- Температура дымовых газов на выходе 30°C
- Эксплуатация в режиме противотока, Диаграмма 3.6
- Требуемая тяга 0 Па
- Длина соединительных элементов максимум 2 м
- Поворот 90° на выходе из котла

Диаграмма 3.6 Природный газ

Конденсационные котлы (эксплуатация в режиме противотока) Температура дымовых газов на выходе из котла t_w≥ 30°C

Эффективная высота дымовой трубы в м


Примечание:Для конденсационных котлов большей мощно должен быть определён расчётом. В случае н

Для конденсационных котлов большей мощности диаметр дымовой трубы должен быть определён расчётом. В случае необходимости обратитесь, пожалуйста, в технический отдел компании Schiedel.

Жидкое топливо Отопительные котлы с естественной тягой

Сжигание жидкого топлива в горелках с вентилятором

Сжигание жидкого топлива в котлах этого типа происходит при разрежении в топке котла. Аэродинамическое сопротивление котла и соединительных элементов со стороны дымовых газов преодолевается за счёт тяги, создаваемой дымовой трубой.

Требуемое поперечное сечение дымовой трубы

- Температура дымовых газов на выходе из котла ≥ 140°C и < 190°C. Диаграмма 4.1.
- Температура дымовых газов на выходе из котла ≥ 190°C. Диаграмма 4.2.

Пример

Топливо - жидкое топливо

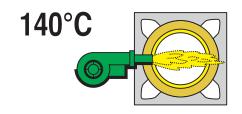
Отопительный котёл с горелкой с вентилятором и естественной тягой Номинальная тепловая мощность - 30 кВт

Температура уходящих газов на выходе из котла - 140°C

Эффективная высота дымовой трубы - 12 м

Общая длина соединительных элементов - 2 м, два поворота на 90°

Результат


Требуемое поперечное сечение дымовой трубы определяется по диаграмме 4.1 и составляет 12 см.

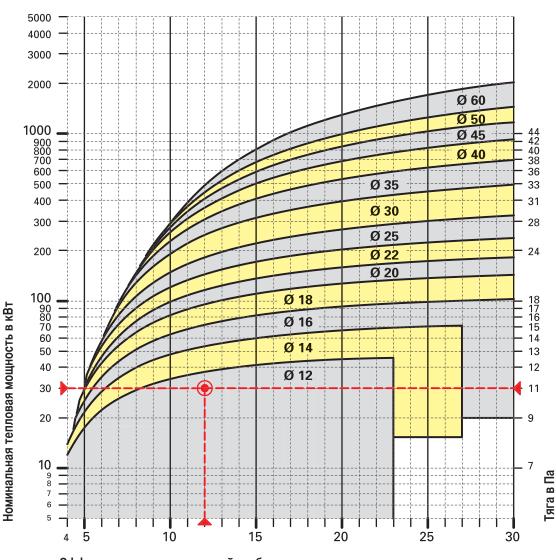
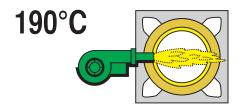

Могут использоваться котлы с тягой до 11 Па (правая шкала диаграммы 4.1)

Диаграмма 4.1 Жидкое топливо

Отопительные котлы с горелками с вентилятором и естественной тягой Температура уходящих газов на выходе из котла t_w≥ 140°C и < 190°C


Расчёт по EN 13384 часть 1

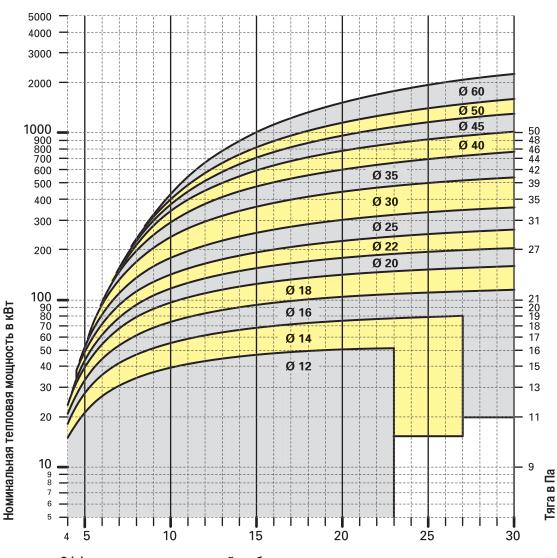
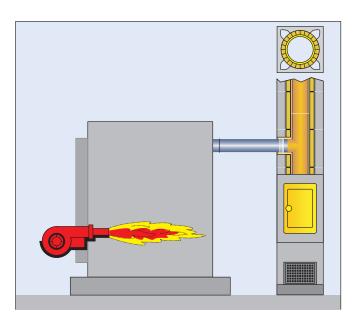

Эффективная высота дымовой трубы в м

Диаграмма 4.2 Жидкое топливо

Отопительные котлы с горелками с вентилятором и естественной тягой Температура уходящих газов на выходе из котла t_w ≥ 190°C


Расчёт по EN 13384 часть 1

Эффективная высота дымовой трубы в м

Жидкое топливо Отопительные котлы с избыточным давлением в камере сгорания

Сжигание жидкого топлива в горелках с вентилятором

Сжигание жидкого топлива в котлах этого типа происходит при избыточном давлении в камере сгорания. Движение дымовых газов через теплообменник осуществляется благодаря нагнетанию в топке. Аэродинамическое сопротивление соединительных элементов преодолевается за счёт тяги, создаваемой дымовой трубой.

Требуемое поперечное сечение дымовой трубы

- Температура дымовых газов на выходе из котла ≥ 60°C и < 80°C. Диаграмма 5.1.
- Температура дымовых газов на выходе из котла ≥ 80°С и < 100°С. Диаграмма 5.2.
- Температура дымовых газов на выходе из котла ≥ 100°C и < 140°C. Диаграмма 5.3.
- Температура дымовых газов на выходе из котла ≥ 140°C и < 190°C. Диаграмма 5.4.
- Температура дымовых газов на выходе из котла ≥ 190°C. Диаграмма 5.5.

Пример

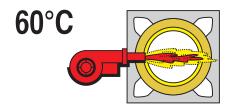
Топливо - жидкое топливо

Котёл с избыточным давлением в камере сгорания и горелкой с вентилятором Номинальная тепловая мощность - 30 кВт

Температура уходящих газов на выходе из котла - 60°C

Эффективная высота дымовой трубы - 12 м

Общая длина соединительных элементов - 2 м, два поворота на 90°


Результат

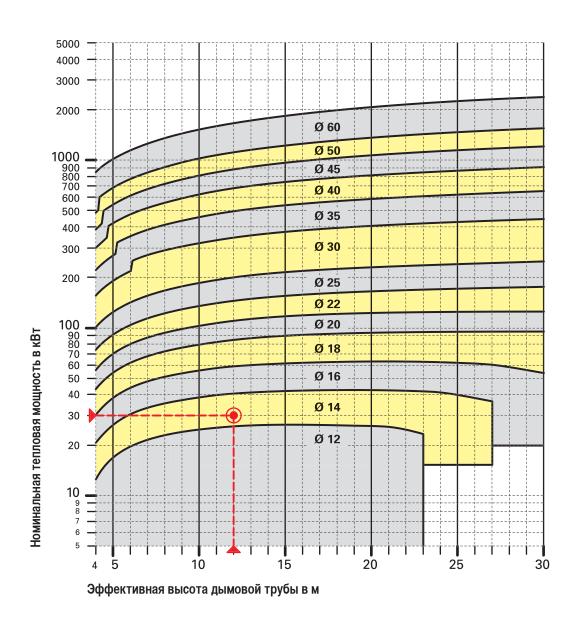
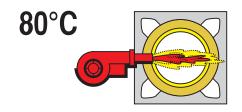

В соответствии с диаграммой 5.1 требуемое поперечное сечение дымовой трубы - 14 см.

Диаграмма 5.1 Жидкое топливо

Котлы с избыточным давлением в камере сгорания с горелками с вентилятором Температура уходящих газов на выходе из котла t_w ≥ 60°C и < 80°C



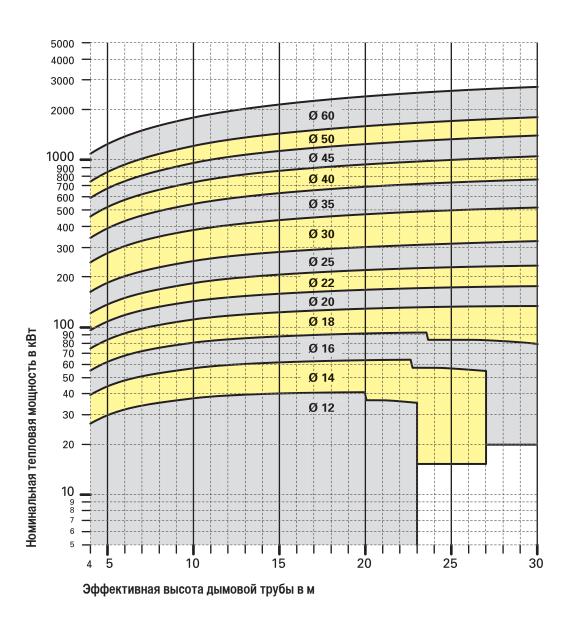
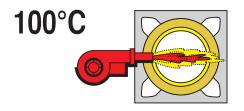


Диаграмма 5.2 Жидкое топливо

Котлы с избыточным давлением в камере сгорания с горелками с вентилятором Температура уходящих газов на выходе из котла t_w ≥ 80°C и < 100°C



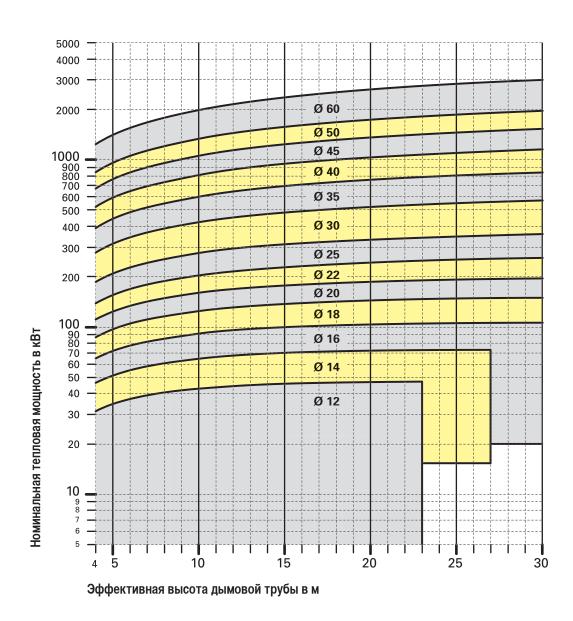
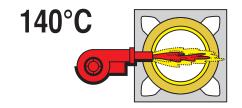


Диаграмма 5.3 Жидкое топливо

Котлы с избыточным давлением в камере сгорания с горелками с вентилятором Температура уходящих газов на выходе из котла t_w ≥ 100°C и < 140°C



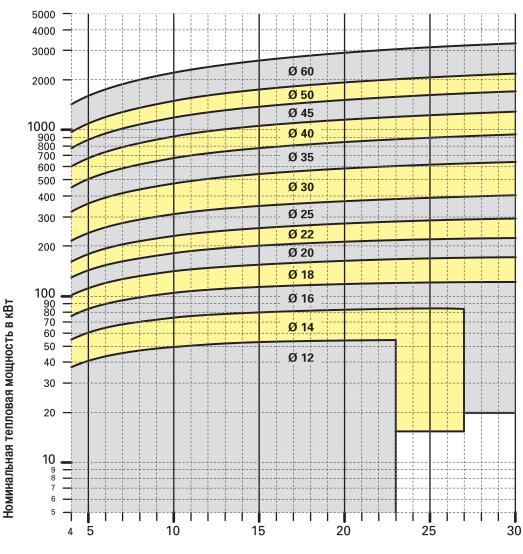
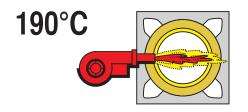


Диаграмма 5.4 Жидкое топливо

Котлы с избыточным давлением в камере сгорания с горелками с вентилятором Температура уходящих газов на выходе из котла t_w≥ 140°C и < 190°C


Расчёт по EN 13384 часть 1

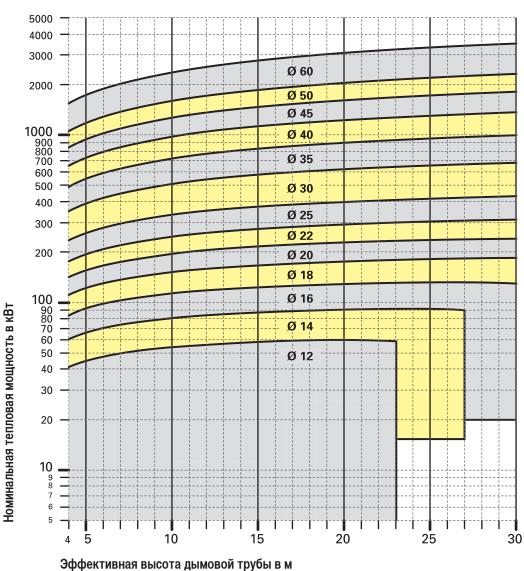
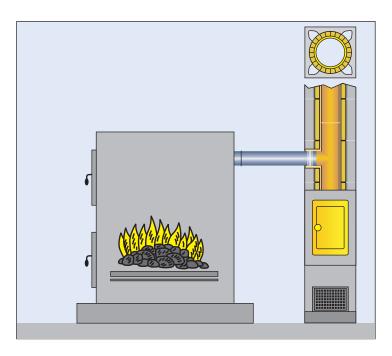

Эффективная высота дымовой трубы в м

Диаграмма 5.5 Жидкое топливо

Котлы с избыточным давлением в камере сгорания с горелками с вентилятором Температура уходящих газов на выходе из котла t_{...}≥ 190°C



Твёрдое топливо Отопительные котлы с естественной тягой

Сжигание кокса, угля и дров

Твёрдое топливо - кокс, уголь или дрова - сжигается в котлах такого типа при разрежении в топке котла. Аэродинамическое сопротивление котла и соединительных элементов со стороны дымовых газов преодолевается за счёт тяги, создаваемой дымовой трубой.

Требуемое поперечное сечение дымовой трубы

- Сжигание кокса и угля. Диаграмма 6.1.
- Сжигание дров.
 Диаграмма 6.2.

Пример

Твёрдое топливо - дрова

Отопительный котёл с естественной тягой Номинальная тепловая мощность - 30 кВт Температура уходящих газов на выходе из котла - 240°С Эффективная высота дымовой трубы - 12 м Общая длина соединительных элементов - 2 м, два поворота на 90°

Результат

Требуемое поперечное сечение дымовой трубы определяется по диаграмме 6.2 и составляет 16 см.

Могут использоваться котлы с тягой до 18 Па (правая шкала диаграммы 6.2)

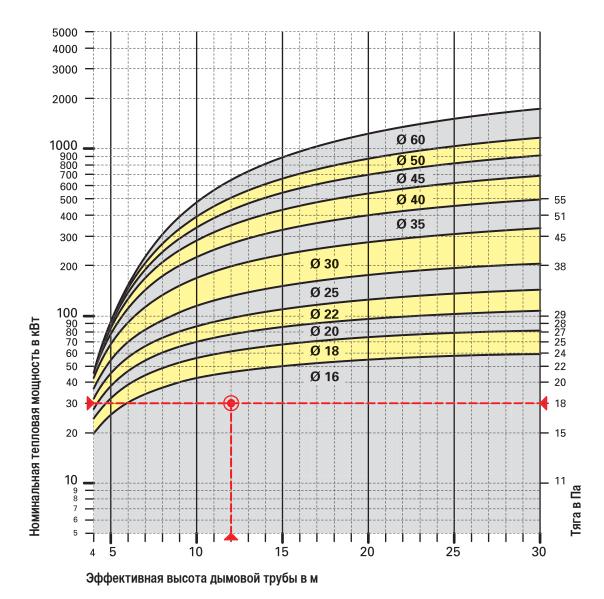


Диаграмма 6.1 Твёрдое топливо - уголь

Отопительные котлы с естественной тягой Температура уходящих газов на выходе из котла t_w≥ 240°C

240°C

Расчёт по EN 13384 часть 1

Schiedel 2008

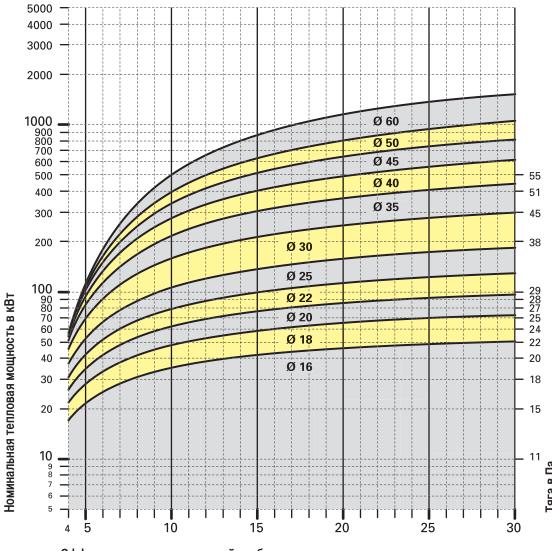
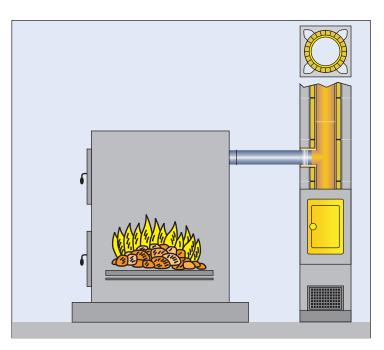


Диаграмма 6.2 Твёрдое топливо - дрова

Отопительные котлы с естественной тягой Температура уходящих газов на выходе из котла t_w ≥ 240°C

240°C


Расчёт по EN 13384 часть 1

Эффективная высота дымовой трубы в м

Твёрдое топливо - древесные пеллеты. Отопительные котлы с естественной тягой

Древесные пеллеты

В этом типе котлов сжигание древесных пеллет происходит при разрежении в топке котла. Аэродинамическое сопротивление котла и соединительных элементов со стороны дымовых газов преодолевается за счёт тяги, создаваемой дымовой трубой.

Требуемое поперечное сечение дымовой трубы

- Температура дымовых газов на выходе из котла ≥ 140°C и < 190°C. Диаграмма 7.1.
- Температура дымовых газов на выходе из котла ≥ 190°C. Диаграмма 7.2.

Пример

Твёрдое топливо - древесные пеллеты

Номинальная тепловая мощность - 30 кВт Температура уходящих газов на выходе из котла - 140°C

Эффективная высота дымовой трубы - 12 м

Общая длина соединительных элементов - 2 м, два поворота на 90°

Результат

Требуемое поперечное сечение дымовой трубы определяется по диаграмме 7.1 и составляет 16 см.

Могут использоваться котлы с тягой до 18 Па (правая шкала диаграммы 7.1)

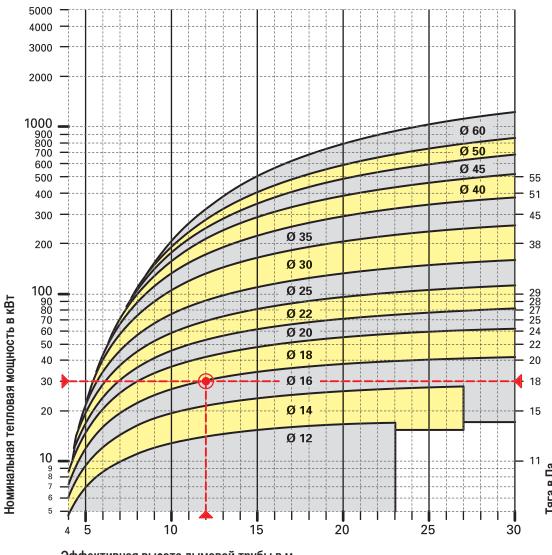


Диаграмма 7.1 Твёрдое топливо - древесные пеллеты

Отопительные котлы с естественной тягой Температура уходящих газов на выходе из котла t_w≥ 140°C и < 190°C

140°C

Эффективная высота дымовой трубы в м

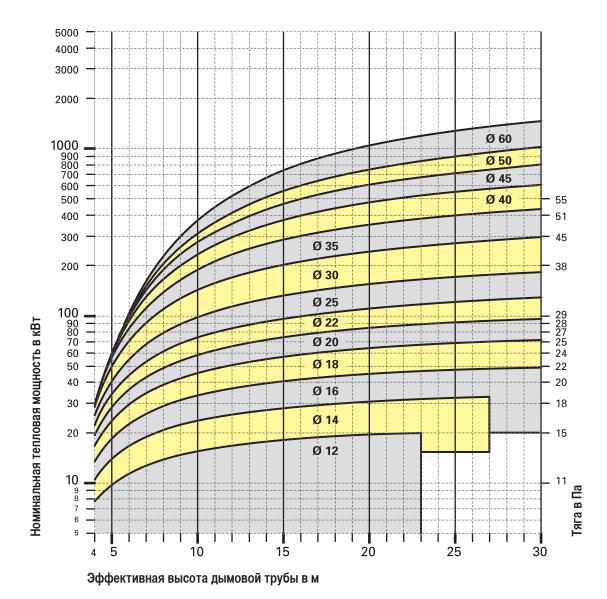


Диаграмма 7.2 Твёрдое топливо - древесные пеллеты

Отопительные котлы с естественной тягой Температура уходящих газов на выходе из котла t_w≥ 190°C

190°C

Расчёт по EN 13384 часть 1

Schiedel 2008

Камины с открытой топкой

Камины с открытой топкой устанавливаются непосредственно рядом с дымовой трубой

Вследствие низких температур дымовых газов и незначительной величины подъёмной силы со стороны дымовых газов допускается устанавливать камины с открытой топкой в непосредственной близости от дымовой трубы. Соединительные элементы от камина должны входить в дымовую трубу под углом 45°. Размеры требуемого поперечного сечения дымовой трубы для камина с открытой топкой представлены на диаграмме 8.1. Выбор осуществляется в зависимости от площади открытого пространства топки и общей эффективной высоты дымовой трубы (от точки подключения до устья).

Исходные данные для диаграммы 8.1 Расход дымовых газов на каждый квадратный метр сечения топки равен m=500 кг/ч.

Температура дымовых газов t_w = 80°C

Термическое сопротивление конструкции трубы $(1/\lambda) = 0.65 \text{ м}^2\text{K/BT}$ Шероховатость внутренней стенки r=0,0015 м

Максимальная длина соединительных элементов максимум 1,5 м Подключение соединительных элементов к дымовой трубе под углом 45°

Подача воздуха для горения по отдельному воздуховоду

При ставших сегодня обычными плотных оконных конструкциях часто бывает необходимым подводить воздух в помещение, где установлен камин с открытой топкой, по отдельному воздуховоду. Требуемое поперечное сечение такого воздуховода можно определить по правой части диаграммы 8.1. В основе этой диаграммы лежит расход приточного воздуха на 1 м² площади открытой топки в размере 360 м³/час. При этом подразумевается, что никакие другие топливосжигающие устройства, которые бы могли забирать часть воздуха, в данном помещении не эксплуатируются.

Пример расчёта

Камин с открытой топкой, площадь сечения топки - 0,5 м², общая эффективная высота дымовой трубы - 6 м, длина соединительных элементов - 1 м, объём помещения - 150 м³.

Требуемое поперечное сечение дымовой трубы по диаграмме 8.1 - 25 см. Требуемое поперечное сечение воздуховода для подачи приточного воздуха - 260 см² (правая часть диаграммы 8.1, интерполяция между линиями 200 см² и 300 cm²).

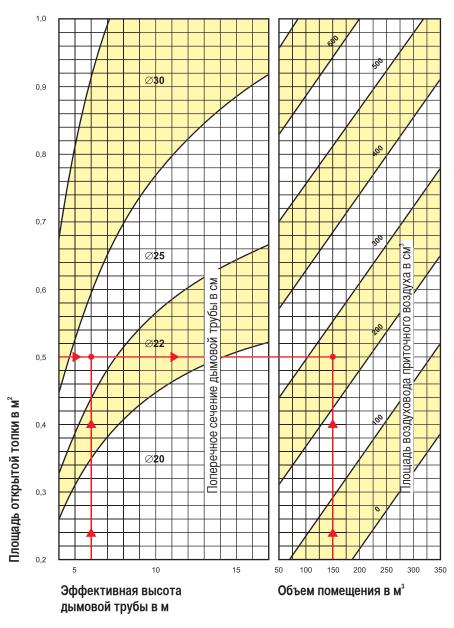


Диаграмма 8.1 Камин с открытой топкой

Температура уходящих газов $t_{w} = 80^{\circ}C$

80°C

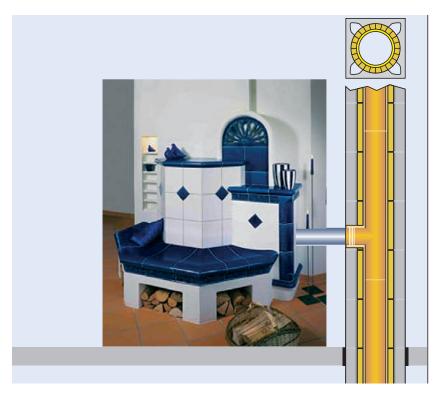


Таблица 8.1 Кафельные печи

Нагревательные кафельные печи

Требуемое поперечное сечение

Обратите внимание на нежелательный подсос воздуха

Таблица для расчёта диаметра дымовой трубы Schiedel UNI, необходимого для подключения к кафельной печи.

Таблица 8.1

Площадь помещения (м²) при высоте H=2,6 м	Объём помещения м³	Поверхность нагрева кафельной печи м ²	Диаметр д трубы Schied мин. эффекти 4 м	el UNI (см)
16 - 22	40 - 60	3,0	16	16
22 - 30	60 - 80	4,0	18	16
30 - 35	80 - 90	4,5	18	18
35 - 40	90 - 105	5,5	18	18
40 - 50	105 - 130	6,5	20	18
50 - 60	130 - 155	8,0	25	20

Schiedel UNI Опросный лист для расчёта поперечного сечения

Заказчик	Фирма:		Название:	ій объект:	
	Улица:		улица:		
	Город:		г ород		
	Тел.: Факс:		тел Факс:		
	Высота над уровнем моря				
	Место установки	— Помещение ко	тельной	□ Жилое п	омещение
Дымовая труба	новая	ш имеющаяся		санация	
Теплогенератор	Производитель:			<u> </u>	
	Тип:			Высота над кровлей	
	Нагрузка:	Полная	Частичная		Общая
	Номинальная			1 **	эффективная
	тепловая мощность			_ KBT Высота в холодной области	высота дымовой трубы
	Расход дымовых газов			_ кг/ч	
	Температура дымовых газов			_°C	
	Макс./требуемая тяга			_ Па	Общая длина
	Содержание СО2			_%	отдельных элементов
	Топливо	Тип сжигания		Общая длина соединительных	дымовой трубь
	Природный газ	Атмосферный		элементов	
		□ Разрежение			▼ ▼
		Под избыточны	ым лавпением	↓ (Общая высота
		Открытый кам		<u> </u>	соединительны: элементов
	□ Пеллеты				
	□ Дрова	Высота открыт	гой топки	CM	
	□ Кокс / уголь		той топки		
Размеры		Соединительные эле	ементы	Дымовая тр	уба
·	Материал:		CM		CM
	Общая длина участков		CM		CM
	Высота над кровлей		CM		CM
	Высота в холодной области		CM		CM
	Эффективная высота		CM		CM
			CM		CM
	Материал внутренней стенки				
	Толщина стенки		MM		
	Повороты:				
	• Количество				
	• Угол • Форма				
	• Форма				
	Подключение к дымовой трубе:		☐ 45°		90°
Верхняя часть на		Толщина		Материал	
	Вместе с изоляцией				
	Облицовка		CM		